

Stored Procedures

September 2023

2 Foreword

1 Foreword

Copyright

The contents of this manual cover material copyrighted by Marigold. Marigold reserves all intellectual property
rights on the manual, which should be treated as confidential information as defined under the agreed upon
software licence/lease terms and conditions.

The use and distribution of this manual is strictly limited to authorised users of the Marigold Interactive
Marketing Software (hereafter the “Software”) and can only be used for the purpose of using the Software
under the agreed upon software licence/lease terms and conditions. Upon termination of the right to use the
Software, this manual and any copies made must either be returned to Marigold or be destroyed, at the latest
two weeks after the right to use the Software has ended.

With the exception of the first sentence of the previous paragraph, no part of this manual may be reprinted or
reproduced or distributed or utilised in any form or by any electronic, mechanical or other means, not known or
hereafter invented, included photocopying and recording, or in any information storage or retrieval or
distribution system, without the prior permission in writing from Marigold.

Marigold will not be responsible or liable for any accidental or inevitable damage that may result from
unauthorised access or modifications.

User is aware that this manual may contain errors or inaccuracies and that it may be revised without advance
notice. This manual is updated frequently.

Marigold welcomes any recommendations or suggestions regarding the manual, as it helps to continuously
improve the quality of our products and manuals.

Table of Contents 3

2 Table of Contents

1 Foreword 2

2 Table of Contents 3

3 Introduction 5

4 SQL Styles Rules 6

4.1 Upper casing of keywords 6

5 Naming Contentions 7

5.1 Table names 7

5.2 Stored procedures 7

5.3 Other objects 7

5.4 Schema-qualified Object names 8

5.5 Field Naming Conventions 8

5.6 Aliases 8

5.7 Statement Terminators 9

5.8 Joins 9

5.9 Avoid Keyword Shortcuts 10

6 SQL Data Types 11

6.1 Data Width and Constraints 11

7 Syntax Formatting 13

8 Permitted Database Objects in Engage 14

8.1 Naming Convention 14

8.2 Documentation Header 14

8.3 Variable and Parameter Declaration 15

8.4 TRY/CATCH Blocks 16

8.5 OUTPUT, RETURN and RAISERROR 16

9 Logging 18

9.1 Invocation 18

9.2 Checking Logs 18

10 Writing T-SQL Statements 20

10.1 Cursors 20

4 Table of Contents

10.2 WITH (NOLOCK) 20

10.3 SELECT INTO 20

10.4 Search arguments 20

10.5 UPDATE 20

10.6 DELETE 21

10.7 MERGE 21

10.8 Dynamic SQL 22

10.9 CTE 22

10.10 Computed columns 22

10.11 Temporary Tables / Table Variables 23

11 Stored Procedures for Tasks 24

11.1 Example EXPORT code 24

11.2 Example IMPORT procedure 25

11.3 Example SQL TASKs 28

11.4 Transactional Journey Feed 29

11.5 Raising Custom Events 31

Introduction 5

3 Introduction

This document is not intended to teach how to write Stored Procedures but aimed at those already familiar

with SQL that should observe recommended best practices when creating Stored Procedures for Marigold

purposes.

Hence focus is on:

• Syntax, style and structure of SQL

• Typical situations in which SPs will be used

• Situations when SPs should be avoided

• Recommendations for structure and style when writing SPs

• Things to avoid when writing SPs

• Some example SPs for common use cases.

Disclaimer:

The Marigold toolset is constantly evolving, so this document will be updated as newer information and
techniques emerge.

Consequently, the content presented here is not intended to be final and absolute, but simply represent useful
information.

 |

6 SQL Styles Rules

4 SQL Styles Rules

Following these rules when writing SQL ensures consistency and uniformity across Marigold toolsets,
improving maintainability when code is amended by different developers. An added benefit is improved
performance when cached plans are reused.

4.1 UPPER CASING OF KEYWORDS

Always capitalize T-SQL keywords (SELECT, FROM, …) and built-in functions (COUNT, MAX, MIN, …).
SSMS users can adjust IntelliSense settings for built-in functions:

Naming Contentions 7

5 Naming Contentions

Use a consistent naming scheme for tables. A common scheme is: TYPE _ENVIRONMENT where:

• ENVIRONMENT is to differentiate between test (_TST) and production (_PRD) for situations where a
platform is used for both

• ‘TYPE’ depends on the object.

5.1 TABLE NAMES

For lists created in the Engage solution, a default naming prefix exists for the underlying tables:

● Audience List: USERS_

● Data List: DATA_

● Option Lists: OPTION_

● Data Selection Lists: ARTICLES_

● Device Lists: DEVICES_

It is recommended that additional tables follow a standard naming convention during creation,

e.g.:

● Data Lists used for extended profiles (1-1) usually begin with: DATA_EXT_

● DataLoader tables: SYNC_

● DataExporter tables: EXP_

● Temporary tables (physical): TMP_

● Configuration tables: CFG_

5.2 STORED PROCEDURES

When created in Engage, all Stored Procedures begin with an ST_ prefix. Where possible it is encouraged to
add further prefixes to help identify the purpose of the stored procedure:

● Dataloader: ST_SYNC_

● Dataexporter: ST_EXP_

● Processing scripts (e.g.: procedures called by the Job Agent for nightly processing of new data or

aggregate calculations): ST_PROCESS_

● Report retrieval (e.g.: procedures linked to Reporting applications): ST_REPORT_

● Logging: ST_LOGGING_

5.3 OTHER OBJECTS

● PRIMARY KEYS: use the prefix PK_ (e.g.: PK_tablename for manually-created primary keys)

● FOREIGN KEYS: use the prefix FK_

● INDEXES:

o Use IDX_ as the prefix

o Use the key columns in the name of the index, e.g. an index on MAIL uses IDX_MAIL.

For combined indexes, list all the key columns in the correct order.

o Add _INC if there are included columns

o Add _FILTERED if it is a filtered index

8 Naming Contentions

o Add _UNQ if it is a unique index

● CONSTRAINTS: DF_ as prefix (add _UNQ to indicate a unique constraint)

5.4 SCHEMA-QUALIFIED OBJECT NAMES

Using schema-qualified object names avoids potential object mismatch by providing the database engine with
information about which specific object to call, so will not presume the schema of the current logged-in user
(SaaS accounts run under their own schema). For example, instead of:

SELECT name, mobile FROM USERS_CUSTOMERS;

Write:

SELECT name, mobile FROM dbo.USERS_CUSTOMERS;

An additional benefit is plan reuse, which avoids creating multiple plans for the same statement or batch to be
executed by users with a different default schema.

5.5 FIELD NAMING CONVENTIONS

There are plenty of articles written about the importance of appropriate and meaningful choices of field and
object names (columns, stored procedures, parameters, etc). Names should be:

● Legal: names should begin with a letter and can only contain letters, numbers and underscores - no
spaces. To avoid confusion, it is recommended to avoid using keywords as names.
https://msdn.microsoft.com/en-us/library/ms189822.aspx has a list of keywords.

● Descriptive: the name should be indicative of its purpose. ADDRESS could refer to home, work,
email, IP, MAC etc, so may need the table name to qualify it. Furthermore, it is encouraged to
populate that column’s Description with annotation to clarify its purpose.

● Succinct: although the maximum length of a name is 64 characters, a longer and more descriptive
name introduces a greater risk of mistyping and may be truncated in presentation. Brevity should be
observed, but not at the expense of clarity.

● Independent of type: do not include the data type in the name. A column called REDEEMED is more
obvious than BOOL_REDEEMED, and decoupling the type from the purpose permits the data type to
be modified without having to update related references.

● List-contextual: columns have meaning appropriate to that list, so a POINTS profile extension can
simply use ARCHERY and GOLF rather than ARCHERYPOINTS and GOLF_POINTS.

5.6 ALIASES

When using Common Table Expressions or subqueries, choose meaningful alias names (rather than aliases
of ‘a’, ‘t1’, etc) and ensure they are clear and obvious. For example, a table is called
‘USERS_CONTACTS_PROD’ could use an alias of ‘CONTACTS’.

The same applies for CTEs and subqueries: use descriptive text. For example, use PURCHASES if the tale
represents all purchases.

Firstly, identify column aliases with the ‘AS’ syntax, e.g. use:

SELECT last_purchase_date AS lastbuy;

https://msdn.microsoft.com/en-us/library/ms189822.aspx

Naming Contentions 9

Instead of:

SELECT last_purchase_date = lastbuy;

Secondly, all references to table columns should then use any declared table aliases to make it clear which
table the field belongs to. For example:

SELECT customers.id AS customer_identifier

 , optin.value AS consent

FROM dbo.USERS_CUSTOMERS AS customers WITH (NOLOCK)

LEFT JOIN dbo.DATA_CUSTOMERS_OPTIN AS optin WITH (NOLOCK)

ON customers.id = optin.userid;

Table aliases are mandatory when statements incorporate more than one object. For statements featuring
single object operations, aliases are still recommended to future-proof the statement for later expansion to
include multiple objects.

5.7 STATEMENT TERMINATORS

Future-proof statements with a statement terminator (;). Some current options (e.g.: Common Table
Expressions) already require that the previous statement has been properly closed:

; WITH EXAMPLE_CTE (

SELECT customers.id AS userid

FROM dbo.USERS_CUSTOMERS customers

WHERE created_dt IS NOT NULL

)

SELECT USERID

FROM EXAMPLE_CTE

WHERE CREATED_DT > DATEADD(MONTH, -1, CURRENT_TIMESTAMP);

5.8 JOINS

Do not use old-style join syntax (using the WHERE clause to perform a join). For example, instead of:

SELECT USERS.MAIL, ORDERS.ORDERDATE

FROM dbo.USERS_CUSTOMERS USERS, dbo.DATA_ORDERS ORDERS

WHERE USERS.ID = ORDERS.USERID;

Instead, adhere to ANSI/ISO 1999 syntax with the following:

SELECT USERS.MAIL, ORDERS.ORDERDATE

FROM dbo.USERS_CUSTOMERS USERS WITH (NOLOCK)

INNER JOIN dbo.DATA_ORDERS ORDERS WITH (NOLOCK)

ON USERS.ID = ORDERS.USERID;

10 Naming Contentions

5.9 AVOID KEYWORD SHORTCUTS

Using shorthand gives no performance gain and retards readability, so always use fully qualified keywords
instead of shorthand equivalents, e.g.:

● In datetime functions, use DAY instead of 'DD'
● Write WEEKDAY instead of ‘DW’
● Use CREATE PROCEDURE instead of ‘CREATE PROC’
● Use BEGIN TRANSACTION instead of ‘BEGIN TRAN’
● Write INNER JOIN instead of just ‘JOIN’ - make all joins explicit
● Write WITH (NOLOCK) instead of just ‘(NOLOCK)’

SQL Data Types 11

6 SQL Data Types

Although all data types could be used within SQL routines (tasks, stored procedures, etc) only certain types
are recognised by Engage. Consequently, only use compatible data types in the situation where database
fields are exposed to Engage functionality (e.g.: a return value from a Stored Procedure or SQL Task).

The SQL data types used by Engage are:

MMP MS-SQL Server type

Boolean BIT

Numeric INT

Long BIGINT

Float FLOAT

Date DATE

DateTime DATETIME

Text NVARCHAR

LongText NVARCHAR

The types that can be safely exposed to Engage are:

• INT, NVARCHAR, DATETIME, DATE, FLOAT and BIT

• NCHAR is permitted but with caveats:

• These fields are safe for PERSONALISATION purposes

• SELECTIONs against these data types adversely impacts SQL plans and introduces
performance delays as the platform is unaware of those data types (so performs implicit converts
during filtering)

Data types that should not be exposed to Engage are:

• SMALLINT/TINYINT – the platform does not perform boundary-checking

• VARCHAR/CHAR/NCHAR are permitted but with caveats:

• These fields are safe for PERSONALISATION purposes

• SELECTIONs against these data types adversely impacts SQL plans and introduces
performance delays as the platform is unaware of those data types (so performs implicit converts
during filtering)

Data types that should be avoided are:

• Deprecated data types (e.g.: NTEXT or TEXT)

6.1 DATA WIDTH AND CONSTRAINTS

Make field as narrow as possible, e.g.:

• NUMERIC rather than LONG

12 SQL Data Types

• TEXT rather than LONGTEXT

Be accurate where possible about the length and data type of fields, for example: a field that will always be
populated should be set to NOT NULL

Syntax Formatting 13

7 Syntax Formatting

These basic formatting rules improves readability of statements and thus assists with faster understanding
and quick amendments:

• List each column on a new row

• Commas should be added at the beginning of a row and not at the end of a previous row (which
permits commenting out specific elements more easily).

• Use spaces liberally: for example, add spaces before and after each comparison

• Use line breaks liberally: for example, add line breaks after each WHERE clause element, separate
multiple statements with at least one blank line, etc

An example of a well-formatted statement would be:

SELECT customers.ID AS USERID

 , promo.CODE

FROM dbo.USERS_CUSTOMERS customers WITH (NOLOCK)

INNER JOIN dbo.DATA_EXT_CUSTOMERS_PROMO promo

ON customers.ID = promo.USERID

WHERE EXISTS (

 SELECT 1

 FROM dbo.ACTION_CUSTOMERS_PROMO actionpromo

 WHERE actionpromo.USERID = customer.ID

 AND (

 actionpromo.ACTIONCODE = 'NEWYEAR'

 OR

 actionpromo.EXEC_DT < DATEADD(DAY, -7, CURRENT_TIMESTAMP)

)

)

AND customers.[NAME] = 'Fireworks';

14 Permitted Database Objects in Engage

8 Permitted Database Objects in Engage

There are particularly good reasons (mostly related to performance) not to use any of these database objects -
by policy, Engage only permits Stored Procedures.

By default, the Engage solution does not provide any functionality to develop and test stored procedures,
therefore it is advisable to use a local MS-SQL install for development and debugging work. Contact
Marigold’s support for assistance in setting up a suitable environment.

Due to the risk that poor code presents to all organisations using that platform, management of stored
procedures is restricted to those holding System admin privilege for that install.

Stored procedures must adhere to specific recommended Marigold practises, which include (but are not
limited to):

1. Naming – all Stored Procedures follow a standard naming convention
2. Documentation – the procedure should be annotated with a standard header
3. Variable and parameter declaration – definition and structure
4. BEGIN / END blocks – denoting self-contained grouped statements
5. TRY / CATCH blocks – handling errors gracefully
6. OUTPUT and RAISERROR – return values and exit status
7. Logging – recommended to use ST_LOGGING_SELLIGENT_ROUTINE

8.1 NAMING CONVENTION

The name of the stored procedure should begin with ST_ and can contain only alphanumerical characters and
an underscore (_). Attempting to use a name that differs from this convention will report an error and disable
the SAVE icon.

8.2 DOCUMENTATION HEADER

Upon creation each stored procedure is furnished with a standard documentation header:

This information should not only be completed but also updated as amendments are made, bringing
maintainability benefits such as:

• Identifying the procedure’s original author.

• Assisting new developers to quickly understand the purpose of the routine.

Lines beginning with a Data Integration Documentation identifier (-- DID -) are parsed using a custom SQL
Server Management Studio script which captures information following each tag (header attribute). To avoid
truncation, each line should not exceed 200 characters.

Permitted Database Objects in Engage 15

Tags serve to document and annotate code blocks, so may appear multiple times (with content concatenated
by the script based on the order in which they appear) and can appear anywhere in the code. It is strongly
recommended additional tags being placed closer to code blocks rather than collating everything in the
header.

The following tags are recognised:

● Author: specifies the code’s original author.
● CreationDate: should contain the original date when the routine was created.
● Version: indicates a X.Y.Z version number (format mentioned later)
● Description: describe the purpose and goal of the routine (without reading the code)
● Exceptions: description of the specific error(s) thrown. Use multiple lines (with tags) for multiple

errors thrown.
● BusinessRules: describe the functional purpose of the routine, i.e.: the overall goal to be achieved by

this code. Additional business rules can be specified by repeating the ‘DID’ part; again, consider
using this tag extensively to document distinct parts of the routine within the code itself rather than to
try and explain everything in the header.

● LastModifiedBy: identifies who last made amendments. It is recommended that this developer also
annotates their changes accordingly closer to the code.

8.3 VARIABLE AND PARAMETER DECLARATION

Variables used in stored procedures should be defined at the top of the routine, providing a quick review of
which are in use. Each variable should be placed on a new line with their datatype and length (even if optional)
as length specification avoids the issue of silent truncation errors. In cases where a variable has a default
value, explicitly specify this in the declarations.

For example:

DECLARE @NAME VARCHAR(50);

DECLARE @AGE INT;

DECLARE @NOW DATETIME = CURRENT_TIMESTAMP;

Parameters should also be treated in the same way:

• Properly aligned on a new line each with the coma separator at the front

• A data type and length explicitly defined and all properly aligned.

• Provide default values for all parameters and align them for easy review.

 Any output parameters should be placed at the end of the list. For example:

CREATE PROCEDURE dbo.ST_SYNC_MYDATALOADER

 @FILENAME NVARCHAR(500)

 , @CAMPAIGNID INT = NULL

 , @RESULT INT = NULL

 , @INSERT INT OUTPUT

 , @UPDATE INT OUTPUT

 , @REJECT INT OUTPUT

 , @MSG NVARCHAR(4000) OUTPUT

16 Permitted Database Objects in Engage

8.4 TRY/CATCH BLOCKS

Some SQL errors will not halt procedure execution and continue to cause more widespread damage with
further processing, for example: a variable specified a data type of INT but is assigned a BIGINT value - an
error will be logged but the variable will contain the value NULL.

For that reason, always use TRY / CATCH blocks to stop the routine upon encountering an error so that the error
can be gracefully handled. For example:

DECLARE @LOG NVARCHAR(4000);

 BEGIN TRY

 -- === write procedure logic here ===

 DECLARE @NUMBER INT;

 -- !!! Oops, Arithmetic overflow error !!!

 SET @NUMBER = 4654651321564163131;

 END TRY

 BEGIN CATCH

 DECLARE @ERROR_MSG NVARCHAR(2000);

 DECLARE @ERROR_SEVERITY INT;

 DECLARE @ERROR_STATE INT;

 -- get all error information

 SET @ERROR_MSG = ERROR_MESSAGE();

 SET @ERROR_SEVERITY = ERROR_SEVERITY();

 SET @ERROR_STATE = ERROR_STATE();

 -- log the error first

 SET @LOG = '{"event_type":"ERROR","MSG":"' + @ERROR_MSG + '"}';

 EXEC [ST_LOGGING_SELLIGENT_ROUTINE] @LOG, @@PROCID;

 -- then throw error back up

 RAISERROR(@ERROR_MSG, @ERROR_SEVERITY, @ERROR_STATE);

 END CATCH

8.5 OUTPUT, RETURN AND RAISERROR

Use the RETURN and OUTPUT options in stored procedures correctly:

• OUTPUT – use this parameter to identify data returned from a procedure

• RETURN – only use this to provide status information, e.g.: ERROR_NUMBER() / @@ERROR.

• RAISERROR – use this function (instead of using the return value of the processor) to raise errors. It is
better to use CATCH to trap the error so it can be logged, then RAISERROR to handle it gracefully.

More information can be found at:

Permitted Database Objects in Engage 17

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql

For Tasks in Engage, note that:

• OUTPUT parameters can be used in the next task stage

• RETURN values can be used to determine if the procedure fails or not

• A hard error in the procedure will make the task fail; RAISERROR will show that exact message.

For Custom Components that use Stored Procedures:

• OUTPUT parameters can be scoped and used further in the journey

• RETURN values can also be fetched and used further in the journey

• A hard error in the procedure will be exposed to the journey, causing that to fail as well (with a default
error message).

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql

18 Logging

9 Logging

Marigold provides ST_LOGGING_SELLIGENT_ROUTINE, a logging framework which writes logging information
to the LOG_SELLIGENT_ROUTINES table. Typical examples of usage from within a stored procedure include:

EXEC dbo.[ST_LOGGING_SELLIGENT_ROUTINE] 'THIS IS A LOG TEST', @@PROCID

SET @MSG = '{"event_type":"ERROR","MSG":"' + ERROR_MESSAGE() + '"}';

EXEC dbo.[ST_LOGGING_SELLIGENT_ROUTINE] @MSG, @@PROCID

A simple Stored Procedure should illustrate how logging is performed, for example:

CREATE PROCEDURE dbo.ST_ProofOfConcept

AS

BEGIN

/* ****** Documentation Template (max 200 chars per line) ************

 -- DID - Author: John Doe

 -- DID - CreationDate: Today

 -- DID - Version: 0.1.0

 -- DID - Description: A proof-of-concept to test logging routines

 -- DID - Exceptions: Exceptional

 -- DID - BusinessRules: TwelveInch Rule

 -- DID - LastModifiedBy: ChangedByThem

********* Documentation Template (max 200 chars per line) ******** */

SET NOCOUNT ON;

 -- writes 'This is a Log Test' into LOG_SELLIGENT_ROUTINES:

 EXEC [ST_LOGGING_SELLIGENT_ROUTINE] 'This is a Log Test', @@PROCID

END;

9.1 INVOCATION

If possible (from Campaign) invoke the stored procedure with:

EXEC [ST_ProofOfConcept]

From Engage, this will require an SQL task containing this Stored Procedure, or a Custom Component using
this stored procedure added to a custom journey which can be invoked manually.

9.2 CHECKING LOGS

The LOG_SELLIGENT_ROUTINES table can then be queried using a routine like:

SELECT TOP 1000 L.ID

, L.SESSIONID

, OBJECT_NAME(L.PROC_OBJECTID) AS 'PROC_OBJECTNAME'

, L.EVENTTYPE

Logging 19

, CONVERT(DATETIME2(0),L.EVENTDT) AS 'EVENTDT'

, OA.CALLSTACK

, CONVERT(NVARCHAR(MAX), DECOMPRESS(L.[LOG])) AS 'LOGMSG'

FROM DBO.LOG_SELLIGENT_ROUTINES AS L WITH (NOLOCK)

OUTER APPLY

(

SELECT (STUFF((SELECT '>' + CONVERT(NVARCHAR(256),

ISNULL(OBJECT_NAME(TRY_CONVERT(INT, S.[VALUE])),'')) AS [text()]

FROM string_split(L.CALL_STACK,'|') S

FOR XML PATH ,TYPE).value('.[1]','nvarchar(max)')

, 1, 2, '')

)

) OA(CALLSTACK)

WHERE 1 = 1

-- specify the name of the Stored Procedure here:

AND OBJECT_NAME(L.PROC_OBJECTID) = 'ST_ProofOfConcept'

ORDER BY L.ID DESC

Those with access to Campaign may use the SQL Pane to conduct such a query. As this feature does not yet
exist in Engage, the only way to surface this information is:

• Create a Data Selection List containing a text field sufficiently large to contain the logging information

• Create a Stored Procedure that queries the DBO.LOG_SELLIGENT_ROUTINES table then inserts
relevant data into that Data Selection List

• Create a Custom Component that calls this Stored Procedure

• Create a page with a Data Selection that uses the Data Selection List as a data source

• Add a repeater to the page to surface this information

• Create a Custom Journey that calls the Custom Component (to populate the Data Selection List) then
uses this page to display rows of logging information.

An alternative approach is to use an EXPORT TASK to export the logging information to a separate file for
analysis, but this may not be a more time-effective method than the journey to expose the information.

20 Writing T-SQL Statements

10 Writing T-SQL Statements

The following section describes several guidelines to follow when creating T-SQL statements. These provide
some best practices on how to use specific options and which methods are best suited in which case.

10.1 CURSORS

Avoid at all costs; they are unnecessary for 99% of cases and cause overhead.

10.2 WITH (NOLOCK)

Add this clause to queries (SELECT statements) to ensure table locking is reduced.

Bear in mind this still allows dirty reads (meaning uncommitted data can be returned by this hint). Hence, omit this hint
for situations when updated values must be retrieved.

10.3 SELECT INTO

This is a common approach to copy data from one table to a new one – but only data is copied: constraints,
indexes and keys will not be duplicated. Consequently, it is advised to create the table first with the correct
structure then use ‘INSERT INTO’ to copy data over.

Similarly, it is wasteful to use ‘SELECT * INTO’ to duplicate all fields when only a few are required: be
economical with data retrievals!

10.4 SEARCH ARGUMENTS

Always use proper search arguments as predicates in queries, which benefits plan creation and performance:

• Do not use manipulations (functions) on columns in the WHERE clause

• Do not use wildcard matches at the start of a string compare (e.g.: avoid LIKE '%.com').

• Make use of variables (e.g.: today’s date) for better plan caching.

• Parameterize values rather than CONCAT

• Use QUOTENAME to prevent possible SQL injection errors

10.5 UPDATE

When using the UPDATE statement, ensure:

• Use a WHERE clause to modify only specific rows

• When working on intermediate result sets, there can be performance gains by creating a new table
then inserting records rather than updating an intermediate table.

Writing T-SQL Statements 21

10.6 DELETE

Avoid DELETE statements when manipulating data through ‘temporary’ or ‘real’ tables; I/O overhead and
fragmentation means benefits of using smaller intermediate tables are lost.

Ensure the initial selection considers the proper filters directly or insert the result set into a new temporary
table.

10.7 MERGE

Although a powerful way to upsert data, the equivalent UPDATE/INSERT/DELETE may still run faster – in
most cases, it is better to use UPDATE and INSERT operations instead. However if MERGE is to be used,
consider the following points:

• The source table has proper datatypes - avoid NVARCHAR(MAX) types.

• The target selection should be proper, so only the fields needed for the MERGE

• The join predicate between the TARGET and SOURCE table should be based on indexed fields,
preferably UNIQUE indexes or PRIMARY KEYs – else SQLServer will not be able to generate a fast
SQL execution plan.

• Any transformation of data must be done in the USING clause for the SOURCE selection.

• The data width of the target selection should not exceed the SQL server 8060 bytes block limit, else
spills and table spools for the selection with MERGE will slow down performance significantly.

• NEVER add extra constraints in the WHEN MATCHED or WHEN NOT MATCHED clause of the
MERGE – this causes the MERGE statement to treat the results like a cursor, degrading
performance.

MERGE dbo.USERS_CUSTOMERS AS TARGET

USING (SELECT MAIL, [NAME] FROM SYNC_USERS_CUSTOMERS WITH (NOLOCK) WHERE MAIL IS
NOT NULL) AS SOURCE

ON (TARGET.MAIL = SOURCE.MAIL)

--When records are matched, update the records if there is any change

WHEN MATCHED

THEN UPDATE SET TARGET.MAIL = SOURCE.MAIL

 , TARGET.CREATED_DT = CURRENT_TIMESTAMP

--When no records are matched, insert the incoming records from source table to target table

WHEN NOT MATCHED

THEN INSERT (MAIL, [NAME]) VALUES (SOURCE.MAIL, SOURCE.[NAME]);

22 Writing T-SQL Statements

10.8 DYNAMIC SQL

Dynamic SQL plans cannot be cached, so they cause a recompile of the SQL execution plan for each
invocation – cached plans are better for performance. However, if Dynamic SQL is needed, adhere to the
following practice:

• Always invoke the dynamic SQL through the following syntax:
EXEC SP_EXECUTESQL …

• All parameters should be provided using variables passed to the ‘SP_EXECUTESQL’ syntax:
EXEC SP_EXECUTESQL @SQL, N’@VALUE INT’, @VALUE = @VALUE;
So no concatenation of the SQL string just to add a value.

• If concatenation is needed for column names or table names, use the ‘QUOTENAME’ function to
mitigate the risk of erroneous SQL, for example:
SET @SQL = 'SELECT @MINID = MIN(ID) FROM dbo.' + QUOTENAME(@TABLENAME) + '
WITH(NOLOCK)';

10.9 CTE

Common Table Expressions have their benefits, such as:

• Improves readability and maintainability

• Provides recursive programming via self-referring tables – e.g.: queries walking itself via self-joins

• Quickly narrowing down data used with windowing functions (ROW_NUMBER, RANK, …), to
calculate rolling averages

However, a CTE will not persist or pre-calculate any data; although it provides similar functionality to a view,
the definition is nor stored in metadata so the SQL engine re-executes the same code each time it is used. If a
CTE is to be referenced multiple times in the same statement, consider instead intermediate (temporary)
tables to hold results, which can be optimized for multiple uses.

10.10 COMPUTED COLUMNS

The two approaches are:

• Non-persisted — the value is not stored but calculated at the moment of retrieval (I.e.: evaluated as
late as possible).

• Persisted — the value is calculated during a data change, then stored in the table (i.e.: evaluated as
early as possible). Due to the additional performance overhead required by non-persisted, this
approach is preferred.

Computed columns cause an overhead when manipulating data but can simplify queries, even removing the
need for Views. Consider the following situation, in which a filter on email domain names takes the form of
LIKE comparisons in a segment, or specific RIGHT/SUBSTRING operations - meaning a performance
overhead each time a segment is executed as the comparison or string operation is unnecessarily repeated.

An alternative approach is to make a persisted computed column, for example taking the domain part of an
email address:

ALTER TABLE dbo.users_vouchers

ADD domain AS RIGHT(mail, CHARINDEX('@', REVERSE(mail))-1) PERSISTED;

Writing T-SQL Statements 23

In this situation, the domain is determined when the MAIL address is created (or altered), performing the string
splitting operation once up-front – so that the value is available for successive queries and comparison
operations. This approach means the initial overhead of a single additional write operation is a worthwhile
investment to save time for frequent read operations in future. Note also that adding an index to a computed
column makes it persisted.

Note that this computed field (DOMAIN) can even be indexed or included in an index, but the amount of expected read
and write operations should justify the use of computed columns. Review the data model and typical business use of the
data carefully to justify this approach.

10.11 TEMPORARY TABLES / TABLE VARIABLES

Temporary Tables are best avoided where possible, as they are stored in TempDB which is heavily used by
the platform as well as shared by many customers on one instance – so overuse of TempDB incurs a
performance hit with a wide area of impact.

Table Variables are treated as Temporary Tables but SQL Server will always return an estimated row count of
one record, and suffer from the same consequences as Temporary Tables - so best avoided for the reasons
mentioned earlier.

24 Stored Procedures for Tasks

11 Stored Procedures for Tasks

Every main type of task (SQL, IMPORT, EXPORT) for ETL processing requires a stored procedure at the
core of its setup:

• For an EXPORT TASK (extract) the stored procedure will be a query that defines the dataset to
export.

• For an IMPORT TASK (load), the stored procedure migrates newly-imported data from a source
staging table to the destination production table.

• For an SQL TASK (transformation), the stored procedure will process already-existing data to modify
it according to business objectives.

11.1 EXAMPLE EXPORT CODE

For a simple example, this procedure summarizes the number of contacts per language to give an idea of
audience list demographics:

CREATE PROCEDURE ST_show_languages
@resultCode INT OUTPUT -- OUTPUT parameter = what's sent out

AS

BEGIN

/* ******************* Documentation Template (max 200 chars per line) ********************

 -- DID - Author: Dave

 -- DID - CreationDate: 2019-07-23

 -- DID - Version: 0.1.0

 -- DID - Description: Just used to group and total by language

 -- DID - Exceptions: Exceptional

 -- DID - BusinessRules: RulerOfBusiness

 -- DID - LastModifiedBy: LastModifiedBy

******************* Documentation Template (max 200 chars per line) ******************** */

 SET NOCOUNT ON;

 SET @resultCode = 99; -- don't default to automatic success

 BEGIN TRY -- try to query the audience list here

 SELECT language, count(*) AS total

 FROM users_newsletter_contacts

 WHERE optout = 0

 GROUP BY language

 ORDER BY total DESC;

 SET @resultCode = 0; -- success!

 END TRY;

 -- +++ OUCH! Something's gone wrong! +++

 BEGIN CATCH

 SET @resultCode = 4; -- SQL error somewhere

 END CATCH;

 -- report the results:

 RETURN @resultCode;

END

Stored Procedures for Tasks 25

11.2 EXAMPLE IMPORT PROCEDURE

This is used for a data loader in which SYNC_IMPORT_TABLE is the list holding the newly-imported data,
used to update both an audience list (USERS_CUSTOMERS) and a profile extension
(DATA_EXT_ADDRESS) off that list.

CREATE PROCEDURE ST_SYNC_DataLoaderExample @FILENAME NVARCHAR(500)

 , @INSERT INT OUTPUT

 , @UPDATE INT OUTPUT

 , @REJECT INT OUTPUT

 , @MSG NVARCHAR(4000) OUTPUT

AS

BEGIN

/* ******************* Documentation Template (max 200 chars per line) ********************

 -- DID - Author: Author

 -- DID - CreationDate: Creation Date

 -- DID - Version: 0.1.0

 -- DID - Description: Description

 -- DID - Exceptions: Exceptions

 -- DID - BusinessRules: Rule

 -- DID - LastModifiedBy: LastModifiedBy

******************* Documentation Template (max 200 chars per line) ******************** */

 SET NOCOUNT ON;

 DECLARE @LOG NVARCHAR(4000);

 BEGIN TRY

 SET @INSERT = 0;

 SET @UPDATE = 0;

 SET @REJECT = 0;

 SET @MSG = '';

26 Stored Procedures for Tasks

 SET @LOG = 'File [' + @FILENAME + '] is being processed.';

 EXEC [ST_LOGGING_SELLIGENT_ROUTINE] @LOG, @@PROCID;

 -- Create matching table

 IF OBJECT_ID('TEMPDB..#MATCH') IS NOT NULL

 BEGIN;

 DROP TABLE #MATCH;

 END;

 CREATE TABLE #MATCH(

 SYNCID INT NOT NULL

 , USERID INT NOT NULL

 , PRIMARY KEY (SYNCID, USERID)

 -- Both fields as not just the audience list will be updated

);

 -- Add existing matches on audience list to matching table

 INSERT INTO #MATCH(SYNCID, USERID)

 SELECT SYNC.ID, USERS.ID

 FROM dbo.SYNC_IMPORT_TABLE SYNC

 INNER JOIN dbo.USERS_CUSTOMERS USERS WITH (NOLOCK)

 ON USERS.MAIL = SYNC.MAIL

 ;

 -- AUDIENCE LIST: Add new records if it does not yet exist and output to
matching table

 MERGE INTO dbo.USERS_CUSTOMERS TARGET

 USING dbo.SYNC_IMPORT_TABLE SYNC

 ON SYNC.MAIL = TARGET.MAIL

 WHEN NOT MATCHED

 THEN INSERT (MAIL, CREATED_DT)

 VALUES (SYNC.MAIL, CURRENT_TIMESTAMP)

Stored Procedures for Tasks 27

 OUTPUT SYNC.ID, INSERTED.ID

 INTO #MATCH (SYNCID, USERID);

 -- === PROFILE EXTENSION: Update existing records ===

 UPDATE ADR

 SET

 STREET = SYNC.STREET

 , HOUSENUMBER = SYNC.HOUSENUMBER

 , CITY = SYNC.CITY

 FROM DATA_EXT_ADDRESS ADR

 INNER JOIN #MATCH MAT

 ON ADR.USERID = MAT.USERID

 INNER JOIN dbo.SYNC_IMPORT_TABLE SYNC

 ON MAT.SYNCID = SYNC.ID

 ;

 -- === PROFILE EXTENSION: Insert new records ===

 INSERT INTO dbo.DATA_EXT_ADDRESS (STREET, HOUSENUMBER, CITY, USERID)

 SELECT SYNC.STREET, SYNC.HOUSENUMBER, SYNC.CITY, MAT.USERID

 FROM dbo.SYNC_IMPORT_TABLE SYNC

 INNER JOIN #MATCH MAT

 ON SYNC.ID = MAT.SYNCID

 WHERE NOT EXISTS

 (

 SELECT 1 FROM dbo.DATA_EXT_ADDRESS ADR WITH (NOLOCK)

 WHERE ADR.USERID = MAT.USERID

);

 END TRY

 BEGIN CATCH

 DECLARE @ERROR_MSG NVARCHAR(2000);

28 Stored Procedures for Tasks

 DECLARE @ERROR_SEVERITY INT;

 DECLARE @ERROR_STATE INT;

 SET @ERROR_MSG = ERROR_MESSAGE();

 SET @ERROR_SEVERITY = ERROR_SEVERITY();

 SET @ERROR_STATE = ERROR_STATE();

 SET @LOG = '{"event_type":"ERROR","MSG":"' + ERROR_MESSAGE() + '"}';

 EXEC [ST_LOGGING_SELLIGENT_ROUTINE] @LOG, @@PROCID;

 RAISERROR(@ERROR_MSG, @ERROR_SEVERITY, @ERROR_STATE);

 END CATCH;

END;

11.3 EXAMPLE SQL TASKS

Some internal manipulation, but how this is then added to a task, I.e.: create the SPs, then create a task and
drag it onto the canvas with success/fail paths.

ALTER PROCEDURE ST_SQL_INT_FORMATION_EX1_SP1 (@ERROR INT OUTPUT, @EXEC_DT NVARCHAR(50) OUTPUT,
@OMSG NVARCHAR(4000) OUTPUT)

AS

BEGIN

 SET NOCOUNT ON;

 SET @ERROR = 0

 SET @EXEC_DT = CONVERT(NVARCHAR,GETDATE(),111)

 SET @OMSG = 'The procedure SQL_INT_FORMATION_EX1_SP1 was started at ' +
CONVERT(NVARCHAR,@EXEC_DT)

 SET @OMSG = ISNULL(@OMSG,'') + 'The procedure SQL_INT_FORMATION_EX1_SP1 ended at '+

 CONVERT(NVARCHAR,GETDATE(),111) + ' AND HAS RETURN VALUE ' +
CONVERT(NVARCHAR,ISNULL(@@ERROR,0))

 SET @ERROR = @ERROR + ISNULL(@@ERROR,0)

 RETURN @ERROR

END

Stored Procedures for Tasks 29

REPORTING JOURNEY-BASED METRICS

SELECT METRICS.CAMPAIGNID, METRICS.ACTIONID, CAMP.[NAME], MAIL.[NAME]

 , METRICS.TARGETCOUNT, METRICS.DELIVERYCOUNT, METRICS.BOUNCECOUNT

FROM CAMPAIGNS CAMP WITH (NOLOCK)

INNER JOIN SIM_REPORTING_FLOWMETRICS METRICS WITH (NOLOCK)

ON CAMP.ID = METRICS.CAMPAIGNID

INNER JOIN CAMPAIGN_ACTIONS ACTIONS WITH (NOLOCK)

ON METRICS.ACTIONID = ACTIONS.ACTIONID AND METRICS.CAMPAIGNID = ACTIONS.CAMPAIGNID

INNER JOIN MAILS MAIL WITH (NOLOCK)

ON MAIL.ID = ACTIONS.MAILID

WHERE CAMP.CREATED_DT < DATEADD(MONTH, -1, CURRENT_TIMESTAMP);

11.4 TRANSACTIONAL JOURNEY FEED

One common use for SQL TASKS is to preload an (ARTICLE) list with pending communications then trigger a
Transactional Journey to process those records. This is a preferable approach to trigger a mass-mail by
batch-processing all the records first then triggering the journey once, rather than triggering the journey with
numerous API calls.

ALTER PROCEDURE ST_SQL_TRG_TRAN_RECEIPT_JOURNEY

AS

BEGIN

 /* ******************* Documentation Template (max 200 chars per line) ********************

 -- DID - Author: Author

 -- DID - CreationDate: Creation Date

 -- DID - Version: 0.1.0

 -- DID - Description: Description

 -- DID - Exceptions: Exceptions

 -- DID - BusinessRules: Rule

 -- DID - LastModifiedBy: LastModifiedBy

 ******************* Documentation Template (max 200 chars per line) ******************** */

SET NOCOUNT ON;

;WITH LATEST_ORDERS ([USERID],[ORDERID],[ORDERCODE],[RN]) AS

(

30 Stored Procedures for Tasks

 SELECT [USERID]

 , [ID] AS [ORDERID]

 , [ORDERCODE]

 , ROW_NUMBER() OVER (PARTITION BY [USERID] ORDER BY [ORDER_DATE] DESC) AS RN

 FROM DBO.[DATA_ACA_DATA_RETAILER_ORDERS] ORD

)

-- === this is ACTION_AL_TX_[orgIDstring]_[JourneyID] ...

-- e.g.: the 32-character organisation of abcd1234-dead-beef-9999-ab12cd34ef56

-- and FlowID of 9876 (read from the journey properties) makes

-- "abcd1234deadbeef9999ab12cd34ef56_9876"

INSERT INTO [ACTION_AL_TX_abcd1234deadbeef9999ab12cd34ef56_9876]

(USERID,ACTIONCODE,CONTENTDATA,TXARRAYFIELD1)

SELECT

 U.[ID]

 , 'RECEIPT' AS ACTIONCODE

 , '{"ORDERCODE":"' + [ORDERCODE] + '"}' AS CONTENTDATA

 , '[{' +

 (SELECT STUFF((

 SELECT '{ "ID":"' + CONVERT(NVARCHAR(100),ISNULL(OL.ID,'')) +

 '","PARAM":"RECEIPT","CONTENT":{"ORDERCODE":"' +

 CONVERT(NVARCHAR(100),ISNULL(O.ORDERCODE,'')) +

 '","ORDER_LINE_TOTAL":"' + CONVERT(NVARCHAR(100),ISNULL(OL.TOTAL_PRICE,'')) +

 '","PRODUCT_ID":"' + CONVERT(NVARCHAR(100),ISNULL(OL.PRODUCTID,'')) +

 '","AMOUNT_PRODUCTS":"' + CONVERT(NVARCHAR(100),ISNULL(OL.AMOUNT,'')) +

 '","PRODUCT_NAME":"' + CONVERT(NVARCHAR(100),ISNULL(PROD.[PRODUCTNAME],'')) +

 '","PRODUCT_DESCRIPTION":"' + CONVERT(NVARCHAR(100),ISNULL(PROD.[PRODUCTDESCRIPTION] ,'')) +

 '"}},'

 FROM DBO.[DATA_ACA_DATA_RETAILER_ORDERS] O

 INNER JOIN DBO.[DATA_ACA_RETAILER_ORDERLINES] OL ON O.[ID] = OL.[ORDERID]

 INNER JOIN DBO.[DATA_ACA_RETAILER_PRODUCTS] PROD ON PROD.[ID] = OL.[PRODUCTID]

 WHERE LORD.ORDERID = O.ID

 FOR XML PATH ('')), 1, 1, '')) + ']'

Stored Procedures for Tasks 31

 FROM dbo.[USERS_ACA_USR_RETAILER] U

 INNER JOIN LATEST_ORDERS LORD

 ON LORD.[USERID] = U.[ID] AND LORD.[RN] = 1

 WHERE U.TESTUSER = 1;

END

11.5 RAISING CUSTOM EVENTS

Inserting records into a Scheduled Custom Event is a useful method used to drive notifications – all that is
needed is the underlying table name which can be found in the Advanced Settings of the event queue's
properties itself:

For example, a Bounce Stored Procedure to notify someone that an OPTOUT has taken place due to the mail
quality settings:

ALTER PROCEDURE ST_exampleBounceNotification

@LISTID INT,

@USERID INT,

@EMAIL NVARCHAR(255),

@BOUNCE_THRESHOLD_REASON NVARCHAR(50),

@INQUEUEID BIGINT = -1,

@STATE INT = -1

AS

32 Stored Procedures for Tasks

BEGIN

/* ******************* Documentation Template (max 200 chars per line) ********************

 -- DID - Author: Dave

 -- DID - CreationDate: Back in 2019

 -- DID - Version: 0.1.0

 -- DID - Description: Responds to an optout bounce by raising a custom event

 -- DID - Exceptions:

 -- DID - BusinessRules: Note the Custom Event needs to be created first

 -- DID - LastModifiedBy: LastModifiedBy

******************* Documentation Template (max 200 chars per line) ******************** */

SET NOCOUNT ON;

 -- ==== let's try to inject the record here ============

 BEGIN TRANSACTION;

 BEGIN TRY

 INSERT INTO EVENTS_101_ALERTS /* Custom Event tablename */

 (

 user_id,

 created_dt,

 bounced_address, /* what address bounced? */

 bounce_reason /* what was the given reason? */

)

 VALUES

 (

 1, /* inform person 1 in MANAGERS list */

 getdate(), /* today's date/time */

 @EMAIL, /* bad email */

 @BOUNCE_THRESHOLD_REASON /* bounce reason */

)

 END TRY

Stored Procedures for Tasks 33

 BEGIN CATCH

 SELECT ERROR_MESSAGE() AS ErrorMessage;

 ROLLBACK TRANSACTION;

 END CATCH;

 COMMIT TRANSACTION;

END

Note: this Stored Procedure presumes there is a Journey that responds to events being raised, so will send a notification
to whomever has MASTER.ID = 1 in the MANAGERS audience list.

